32-155

  1. Events
  2. Venues
  3. 32-155
Events at this venue
Today

LIDS Seminar – Rayadurgam Srikant (University of Illinois at Urbana-Champaign)

32-155

TBD Bio: ____________________________________ The LIDS Seminar Series features distinguished speakers who provide an overview of a research area, as well as exciting recent progress in that area. Intended for a broad audience, seminar topics span the areas of communications, computation, control, learning, networks, probability and statistics, optimization, and signal processing. 

LIDS Seminar – Sujay Sanghavi (University of Texas at Austin)

32-155

TBD Bio: ____________________________________ The LIDS Seminar Series features distinguished speakers who provide an overview of a research area, as well as exciting recent progress in that area. Intended for a broad audience, seminar topics span the areas of communications, computation, control, learning, networks, probability and statistics, optimization, and signal processing. 

The Age of Information in Networks: Moments, Distributions, and Sampling

32-155

We examine a source providing status updates to monitors through a network with state defined by a continuous-time finite Markov chain. Using an age of information (AoI) metric, we characterize timeliness by the vector of ages tracked by the monitors. Based on a stochastic hybrid systems (SHS) approach, we derive first-order linear differential equations for…

LIDS Seminar – George Pappas (University of Pennsylvania)

32-155

TBD Bio: ____________________________________ The LIDS Seminar Series features distinguished speakers who provide an overview of a research area, as well as exciting recent progress in that area. Intended for a broad audience, seminar topics span the areas of communications, computation, control, learning, networks, probability and statistics, optimization, and signal processing. 

Data-driven Coordination of Distributed Energy Resources

32-155

The integration of distributed energy resources (DERs), e.g., rooftop photovoltaics installations, electric energy storage devices, and flexible loads, is becoming prevalent. This integration poses numerous operational challenges on the lower-voltage systems to which the DERs are connected, but also creates new opportunities for the provision of grid services. In the first part of the talk,…

Dynamic Monitoring and Decision Systems (DyMonDS) Framework for Data-Enabled Integration in Complex Electric Energy Systems

32-155

In this talk, we introduce a unifying Dynamic Monitoring and Decision Systems (DyMonDS) framework that is based on multi-layered modeling for aggregation and minimal coordination of interactions between the layers of complex electric energy systems. Using this approach, distributed control and optimization problems are formulated so that: (1) the low-level decision-makers optimize cost of local…

Learning Engines for Healthcare: Using Machine Learning to Transform Clinical Practice and Discovery

32-155

The overarching goal of my research is to develop cutting-edge machine learning, AI and operations research theory, methods, algorithms, and systems to understand the basis of health and disease; develop methodology to catalyze clinical research; support clinical decisions through individualized medicine; inform clinical pathways, better utilize resources & reduce costs; and inform public health. To…

On Coupling Methods for Nonlinear Filtering and Smoothing

32-155

Bayesian inference for non-Gaussian state-space models is a ubiquitous problem with applications ranging from geophysical data assimilation to mathematical finance. We will discuss how deterministic couplings between probability distributions enable new solutions to this problem. We first consider filtering in high-dimensional models with nonlinear (potentially chaotic) dynamics and sparse observations in space and time. While…

Personalized Dynamic Pricing with Machine Learning: High Dimensional Covariates and Heterogeneous Elasticity

32-155

We consider a seller who can dynamically adjust the price of a product at the individual customer level, by utilizing information about customers’ characteristics encoded as a $d$-dimensional feature vector. We assume a personalized demand model, parameters of which depend on $s$ out of the $d$ features. The seller initially does not know the relationship…

Automatic Computation of Exact Worst-Case Performance for First-Order Methods

32-155

Joint work with Adrien Taylor (INRIA) and Francois Glineur (UCLouvain). We show that the exact worst-case performances of a wide class of first-order convex optimization algorithms can be obtained as solutions to semi-definite programs, which provide both the performance bounds and functions on which these are reached.  Our formulation is based on a necessary and…


© MIT Institute for Data, Systems, and Society | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617-253-1764 |